112 research outputs found

    Real-time investigation of dynamic protein crystallization in living cells

    Get PDF
    X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus ÎŒNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitroL.R., M.K., D.R., and C.B. thank the German Federal Ministry for Education and Research (BMBF) for funding (Grant Nos. 01KX0806 and 01KX0807). L.R., M.D., and C.B. acknowledge support from the BMBF in the context of the Röntgen-Angström-Cluster (Grant No. 05K12GU3). J.M.-C. and A.B.-N. acknowledge support from the Spanish Ministerio EconomĂ­a y Competitividad (MINECO, Grant No. BFU2013-43513-R). I.V.M., R.D., and L.R. are grateful for support from the DFG Cluster of Excellence “Inflammation at Interfaces” (EXC 306)S

    High-throughput mutation, selection, and phenotype screening of mutant methanogenic archaea

    Get PDF
    Bacterial and archaeal genomes can contain 30% or more hypothetical genes with no predicted function. Phylogenetically deep-branching microbes, such as methane-producing archaea (methanogens), contain up to 50% genes with unknown function. In order to formulate hypotheses about the function of hypothetical gene functions in the strict anaerobe, Methanosarcina acetivorans, we have developed high-throughput anaerobic techniques to UV mutagenize, screen, and select for mutant strains in 96-well plates. Using these approaches we have isolated 10 mutant strains that exhibit a variety of physiological changes including increased or decreased growth rate relative to the parent strain when cells use methanol and/or acetate as carbon and energy sources. This method provides an avenue for the first step in identifying new gene functions: associating a genetic mutation with a reproducible phenotype. Mutations in bona fide methanogenesis genes such as corrinoid methyltransferases and proton-translocating F420H2:methanophenazine oxidoreductase (Fpo) were also generated, opening the door to in vivo functional complementation experiments. Irradiation-based mutagenesis such as from ultraviolet (UV) light, combined with modern genome sequencing, is a useful procedure to discern systems- level gene function in prokaryote taxa that can be axenically cultured but which may be resistant to chemical mutagens. Includes supplementary tables & figure

    Cyclodextrin/adamantane-mediated targeting of inoculated bacteria in mice

    Get PDF
    Cyclodextrin (CD)-based host-guest interactions with adamantane (Ad) have demonstrated use for functionalizing living cells in vitro. The next step in this supramolecular functionalization approach is to explore the concept to deliver chemical cargo to living cells in vivo, e.g., inoculated bacteria, in order to study their dissemination. We validated this concept in two rodent Staphylococcus aureus models. Bacteria (1 X 10(8) viable S. aureus) were inoculated by (1) intramuscular injection or (2) intrasplenic injection followed by dissemination throughout the liver. The bacteria were prefunctionalized with Tc-99m-UBI29-41-Ad(2) (primary vector), which allowed us to both determine the bacterial load and create an in vivo target for the secondary host-vector (24 h post-inoculation). The secondary vector, i.e., chemical cargo delivery system, made use of a In-111-Cy5(0)(.5)CD(9)PIBMA(39 )polymer that was administered intravenously. Bacteria-specific cargo delivery as a result of vector complexation was evaluated by dual-isotope SPECT imaging and biodistribution studies (In-111), and by fluorescence (Cy5); these evaluations were performed 4 h post-injection of the secondary vector. Mice inoculated with nonfunctionalized S. aureus and mice without an infection served as controls. Dual-isotope SPECT imaging demonstrated that In-111-Cy5(0)(.5)CD(9)PIBMA(3)(9) colocalized with Tc-99m-UBI29-41-Ad(2)-labeled bacteria in both muscle and liver. In inoculated muscle, a 2-fold higher uptake level (3.2 +/- 1.0%ID/g) was noted compared to inoculation with nonfunctionalized bacteria (1.9 +/- 0.4%ID/g), and a 16-fold higher uptake level compared to noninfected muscle (0.2 +/- 0.1%ID/g). The hepatic accumulation of the host-vector was nearly 10-fold higher (27.1 +/- 11.1%ID/g) compared to the noninfected control (2.7 +/- 0.3%ID/g; p < 0.05). Fluorescence imaging of the secondary vector corroborated SPECT-imaging and biodistribution findings. We have demonstrated that supramolecular host-guest complexation can be harnessed to achieve an in vivo cargo delivery strategy, using two different bacterial models in soft tissue and liver. This proof-of-principle study paves a path toward developing innovative drug delivery concepts via cell functionalization techniques.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Mathematical modelling of polyamine metabolism in bloodstream-form trypanosoma brucei: An application to drug target identification

    Get PDF
    © 2013 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis article has been made available through the Brunel Open Access Publishing Fund.We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT) and ornithine production (OrnPt) have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione) were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.The work was carried out under a PhD programme partly funded by Prof. Ray Welland, School of Computing Science, University of Glasgo

    Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Get PDF
    Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed

    Late Stage Infection in Sleeping Sickness

    Get PDF
    At the turn of the 19th century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles

    Factors Affecting Trypanosome Maturation in Tsetse Flies

    Get PDF
    Trypanosoma brucei brucei infections which establish successfully in the tsetse fly midgut may subsequently mature into mammalian infective trypanosomes in the salivary glands. This maturation is not automatic and the control of these events is complex. Utilising direct in vivo feeding experiments, we report maturation of T. b. brucei infections in tsetse is regulated by antioxidants as well as environmental stimuli. Dissection of the maturation process provides opportunities to develop transmission blocking vaccines for trypanosomiasis. The present work suggests L-cysteine and/or nitric oxide are necessary for the differentiation of trypanosome midgut infections in tsetse

    Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites

    Get PDF
    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities

    Preclinical Assessment of the Treatment of Second-Stage African Trypanosomiasis with Cordycepin and Deoxycoformycin

    Get PDF
    There is an urgent need to substitute the highly toxic arsenic compounds still in use for treatment of the encephalitic stage of African trypanosomiasis, a disease caused by infection with Trypanosoma brucei. We exploited the inability of trypanosomes to engage in de novo purine synthesis as a therapeutic target. Cordycepin was selected from a trypanocidal screen of a 2200-compound library. When administered together with the adenosine deaminase inhibitor deoxycoformycin, cordycepin cured mice inoculated with the human pathogenic subspecies T. brucei rhodesiense or T. brucei gambiense even after parasites had penetrated into the brain. Successful treatment was achieved by intraperitoneal, oral or subcutaneous administration of the compounds. Treatment with the doublet also diminished infection-induced cerebral inflammation. Cordycepin induced programmed cell death of the parasites. Although parasites grown in vitro with low doses of cordycepin gradually developed resistance, the resistant parasites lost virulence and showed no cross-resistance to trypanocidal drugs in clinical use. Our data strongly support testing cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT
    • 

    corecore